• Bookmarks

    Bookmarks

  • Concepts

    Concepts

  • Activity

    Activity

  • Courses

    Courses


Automaticity refers to the ability to perform tasks with little or no conscious thought, often as a result of extensive practice and repetition. It is crucial in freeing up cognitive resources, allowing individuals to focus on more complex tasks while performing routine actions efficiently.
Concept
Limits are fundamental to calculus, providing a way to rigorously define the behavior of functions as inputs approach a particular value or infinity. They are essential for understanding continuity, derivatives, and integrals, forming the basis for analyzing and solving problems involving change and motion.
The Intermediate Value Theorem states that for any continuous function f defined on a closed interval [a, b], if a value N lies between f(a) and f(b), there exists at least one c in the interval (a, b) such that f(c) = N. This theorem is fundamental in proving the existence of roots within a given interval and is a cornerstone in real analysis and calculus.
Uniform continuity is a stronger form of continuity for functions, ensuring that the rate of change is controlled uniformly across the entire domain. Unlike standard continuity, where the behavior of the function can vary at different points, Uniform continuity guarantees that for any small change in the output, there is a single, consistent threshold for input changes that works everywhere on the domain.
Differentiability of a function at a point implies that the function is locally linearizable around that point, meaning it can be closely approximated by a tangent line. It requires the existence of a derivative at that point, which in turn demands continuity, but not all continuous functions are differentiable.
|f(x) - L| < εT|f(x) - L| < εh|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εb|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εk|f(x) - L| < εm|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εo|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε_|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < ε4|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < ε-|f(x) - L| < εp|f(x) - L| < εo|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εs|f(x) - L| < ε_|f(x) - L| < εa|f(x) - L| < εc|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εv|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < ε_|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε_|f(x) - L| < ε_|f(x) - L| < εj|f(x) - L| < εs|f(x) - L| < ε8|f(x) - L| < εA|f(x) - L| < εc|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εs|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε:|f(x) - L| < ε |f(x) - L| < ε4|f(x) - L| < εp|f(x) - L| < εx|f(x) - L| < ε;|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εi|f(x) - L| < εd|f(x) - L| < ε |f(x) - L| < ε=|f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < εd|f(x) - L| < εy|f(x) - L| < εn|f(x) - L| < εa|f(x) - L| < εm|f(x) - L| < εi|f(x) - L| < εc|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εp|f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εg|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < ε_|f(x) - L| < εb|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εl|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εp|f(x) - L| < εe|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < ε=|f(x) - L| < ε/|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εc|f(x) - L| < εe|f(x) - L| < εp|f(x) - L| < εt|f(x) - L| < ε/|f(x) - L| < εe|f(x) - L| < εp|f(x) - L| < εs|f(x) - L| < εi|f(x) - L| < εl|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < ε-|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εl|f(x) - L| < εt|f(x) - L| < εa|f(x) - L| < ε-|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < εe|f(x) - L| < εp|f(x) - L| < εs|f(x) - L| < εi|f(x) - L| < εl|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < ε-|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εl|f(x) - L| < εt|f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εa|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε |f(x) - L| < εi|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < εf|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < εm|f(x) - L| < εa|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εz|f(x) - L| < εa|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < ε |f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εh|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εb|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εk|f(x) - L| < εm|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εo|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε_|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < ε4|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < ε-|f(x) - L| < εp|f(x) - L| < εo|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εs|f(x) - L| < ε_|f(x) - L| < εa|f(x) - L| < εc|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εv|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < ε_|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε_|f(x) - L| < ε_|f(x) - L| < εj|f(x) - L| < εs|f(x) - L| < ε8|f(x) - L| < εA|f(x) - L| < εc|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εs|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε:|f(x) - L| < ε |f(x) - L| < ε4|f(x) - L| < εp|f(x) - L| < εx|f(x) - L| < ε;|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εi|f(x) - L| < εd|f(x) - L| < ε |f(x) - L| < ε=|f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < εd|f(x) - L| < εy|f(x) - L| < εn|f(x) - L| < εa|f(x) - L| < εm|f(x) - L| < εi|f(x) - L| < εc|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εp|f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εg|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < ε_|f(x) - L| < εb|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εl|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εp|f(x) - L| < εe|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < ε=|f(x) - L| < ε/|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εc|f(x) - L| < εe|f(x) - L| < εp|f(x) - L| < εt|f(x) - L| < ε/|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εm|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εc|f(x) - L| < εe|f(x) - L| < εp|f(x) - L| < εt|f(x) - L| < ε>|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εm|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εc|f(x) - L| < εe|f(x) - L| < εp|f(x) - L| < εt|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εa|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε |f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εa|f(x) - L| < εl|f(x) - L| < εc|f(x) - L| < εu|f(x) - L| < εl|f(x) - L| < εu|f(x) - L| < εs|f(x) - L| < ε,|f(x) - L| < ε |f(x) - L| < εp|f(x) - L| < εr|f(x) - L| < εo|f(x) - L| < εv|f(x) - L| < εi|f(x) - L| < εd|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εg|f(x) - L| < ε |f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εb|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εk|f(x) - L| < εm|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εo|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε_|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < ε4|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < ε-|f(x) - L| < εp|f(x) - L| < εo|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εs|f(x) - L| < ε_|f(x) - L| < εa|f(x) - L| < εc|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εv|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < ε_|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε_|f(x) - L| < ε_|f(x) - L| < εj|f(x) - L| < εs|f(x) - L| < ε8|f(x) - L| < εA|f(x) - L| < εc|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εs|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε:|f(x) - L| < ε |f(x) - L| < ε4|f(x) - L| < εp|f(x) - L| < εx|f(x) - L| < ε;|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εi|f(x) - L| < εd|f(x) - L| < ε |f(x) - L| < ε=|f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < εd|f(x) - L| < εy|f(x) - L| < εn|f(x) - L| < εa|f(x) - L| < εm|f(x) - L| < εi|f(x) - L| < εc|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εp|f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εg|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < ε_|f(x) - L| < εb|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εl|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εp|f(x) - L| < εe|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < ε=|f(x) - L| < ε/|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εc|f(x) - L| < εe|f(x) - L| < εp|f(x) - L| < εt|f(x) - L| < ε/|f(x) - L| < εr|f(x) - L| < εi|f(x) - L| < εg|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < εo|f(x) - L| < εu|f(x) - L| < εs|f(x) - L| < ε-|f(x) - L| < εf|f(x) - L| < εo|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εa|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < εr|f(x) - L| < εi|f(x) - L| < εg|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < εo|f(x) - L| < εu|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εf|f(x) - L| < εo|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εa|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εa|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε |f(x) - L| < εf|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εh|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εb|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εk|f(x) - L| < εm|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εo|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε_|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < ε4|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < ε-|f(x) - L| < εp|f(x) - L| < εo|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εs|f(x) - L| < ε_|f(x) - L| < εa|f(x) - L| < εc|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εv|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < ε_|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε_|f(x) - L| < ε_|f(x) - L| < εj|f(x) - L| < εs|f(x) - L| < ε8|f(x) - L| < εA|f(x) - L| < εc|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εs|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε:|f(x) - L| < ε |f(x) - L| < ε4|f(x) - L| < εp|f(x) - L| < εx|f(x) - L| < ε;|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εi|f(x) - L| < εd|f(x) - L| < ε |f(x) - L| < ε=|f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < εd|f(x) - L| < εy|f(x) - L| < εn|f(x) - L| < εa|f(x) - L| < εm|f(x) - L| < εi|f(x) - L| < εc|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εp|f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εg|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < ε_|f(x) - L| < εb|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εl|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εp|f(x) - L| < εe|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < ε=|f(x) - L| < ε/|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εc|f(x) - L| < εe|f(x) - L| < εp|f(x) - L| < εt|f(x) - L| < ε/|f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < ε-|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εu|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < ε>|f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < ε |f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εu|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εa|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε |f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εg|f(x) - L| < εe|f(x) - L| < εn|f(x) - L| < εc|f(x) - L| < εe|f(x) - L| < ε.|f(x) - L| < ε |f(x) - L| < εI|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εt|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εh|f(x) - L| < εa|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < εf|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εc|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < ε |f(x) - L| < εf|f(x) - L| < ε(|f(x) - L| < εx|f(x) - L| < ε)|f(x) - L| < ε |f(x) - L| < εa|f(x) - L| < εp|f(x) - L| < εp|f(x) - L| < εr|f(x) - L| < εo|f(x) - L| < εa|f(x) - L| < εc|f(x) - L| < εh|f(x) - L| < εe|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εb|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εk|f(x) - L| < εm|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εo|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε_|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < ε4|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < ε-|f(x) - L| < εp|f(x) - L| < εo|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εs|f(x) - L| < ε_|f(x) - L| < εa|f(x) - L| < εc|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εv|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < ε_|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε_|f(x) - L| < ε_|f(x) - L| < εj|f(x) - L| < εs|f(x) - L| < ε8|f(x) - L| < εA|f(x) - L| < εc|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εs|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε:|f(x) - L| < ε |f(x) - L| < ε4|f(x) - L| < εp|f(x) - L| < εx|f(x) - L| < ε;|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εi|f(x) - L| < εd|f(x) - L| < ε |f(x) - L| < ε=|f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < εd|f(x) - L| < εy|f(x) - L| < εn|f(x) - L| < εa|f(x) - L| < εm|f(x) - L| < εi|f(x) - L| < εc|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εp|f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εg|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < ε_|f(x) - L| < εb|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εl|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εp|f(x) - L| < εe|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < ε=|f(x) - L| < ε/|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εc|f(x) - L| < εe|f(x) - L| < εp|f(x) - L| < εt|f(x) - L| < ε/|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εm|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εl|f(x) - L| < ε>|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εm|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εL|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εa|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε |f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εx|f(x) - L| < ε |f(x) - L| < εa|f(x) - L| < εp|f(x) - L| < εp|f(x) - L| < εr|f(x) - L| < εo|f(x) - L| < εa|f(x) - L| < εc|f(x) - L| < εh|f(x) - L| < εe|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εb|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εk|f(x) - L| < εm|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εo|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε_|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < ε4|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < ε-|f(x) - L| < εp|f(x) - L| < εo|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εs|f(x) - L| < ε_|f(x) - L| < εa|f(x) - L| < εc|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εv|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < ε_|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε_|f(x) - L| < ε_|f(x) - L| < εj|f(x) - L| < εs|f(x) - L| < ε8|f(x) - L| < εA|f(x) - L| < εc|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εs|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε:|f(x) - L| < ε |f(x) - L| < ε4|f(x) - L| < εp|f(x) - L| < εx|f(x) - L| < ε;|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εi|f(x) - L| < εd|f(x) - L| < ε |f(x) - L| < ε=|f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < εd|f(x) - L| < εy|f(x) - L| < εn|f(x) - L| < εa|f(x) - L| < εm|f(x) - L| < εi|f(x) - L| < εc|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εp|f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εg|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < ε_|f(x) - L| < εb|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εl|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εp|f(x) - L| < εe|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < ε=|f(x) - L| < ε/|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εc|f(x) - L| < εe|f(x) - L| < εp|f(x) - L| < εt|f(x) - L| < ε/|f(x) - L| < εp|f(x) - L| < εo|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εc|f(x) - L| < ε>|f(x) - L| < εp|f(x) - L| < εo|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εa|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε |f(x) - L| < εi|f(x) - L| < εf|f(x) - L| < ε,|f(x) - L| < ε |f(x) - L| < εf|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εe|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εy|f(x) - L| < ε |f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εb|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εk|f(x) - L| < εm|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εo|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε_|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < ε4|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < ε-|f(x) - L| < εp|f(x) - L| < εo|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εs|f(x) - L| < ε_|f(x) - L| < εa|f(x) - L| < εc|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εv|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < ε_|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε_|f(x) - L| < ε_|f(x) - L| < εj|f(x) - L| < εs|f(x) - L| < ε8|f(x) - L| < εA|f(x) - L| < εc|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εs|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε:|f(x) - L| < ε |f(x) - L| < ε4|f(x) - L| < εp|f(x) - L| < εx|f(x) - L| < ε;|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εi|f(x) - L| < εd|f(x) - L| < ε |f(x) - L| < ε=|f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < εd|f(x) - L| < εy|f(x) - L| < εn|f(x) - L| < εa|f(x) - L| < εm|f(x) - L| < εi|f(x) - L| < εc|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εp|f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εg|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < ε_|f(x) - L| < εb|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εl|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εp|f(x) - L| < εe|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < ε=|f(x) - L| < ε/|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εc|f(x) - L| < εe|f(x) - L| < εp|f(x) - L| < εt|f(x) - L| < ε/|f(x) - L| < εp|f(x) - L| < εo|f(x) - L| < εs|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εn|f(x) - L| < εu|f(x) - L| < εm|f(x) - L| < εb|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε-|f(x) - L| < εe|f(x) - L| < ε>|f(x) - L| < εP|f(x) - L| < εo|f(x) - L| < εs|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < εn|f(x) - L| < εu|f(x) - L| < εm|f(x) - L| < εb|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εε|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εa|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε,|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εh|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εi|f(x) - L| < εs|f(x) - L| < εt|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < εp|f(x) - L| < εo|f(x) - L| < εs|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < εn|f(x) - L| < εu|f(x) - L| < εm|f(x) - L| < εb|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εδ|f(x) - L| < ε |f(x) - L| < εs|f(x) - L| < εu|f(x) - L| < εc|f(x) - L| < εh|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εh|f(x) - L| < εa|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εw|f(x) - L| < εh|f(x) - L| < εe|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εb|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εk|f(x) - L| < εm|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εo|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε_|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < ε4|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < ε-|f(x) - L| < εp|f(x) - L| < εo|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εs|f(x) - L| < ε_|f(x) - L| < εa|f(x) - L| < εc|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εv|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < ε_|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε_|f(x) - L| < ε_|f(x) - L| < εj|f(x) - L| < εs|f(x) - L| < ε8|f(x) - L| < εA|f(x) - L| < εc|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εs|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε:|f(x) - L| < ε |f(x) - L| < ε4|f(x) - L| < εp|f(x) - L| < εx|f(x) - L| < ε;|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εi|f(x) - L| < εd|f(x) - L| < ε |f(x) - L| < ε=|f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < εd|f(x) - L| < εy|f(x) - L| < εn|f(x) - L| < εa|f(x) - L| < εm|f(x) - L| < εi|f(x) - L| < εc|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εp|f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εg|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < ε_|f(x) - L| < εb|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εl|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εp|f(x) - L| < εe|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < ε=|f(x) - L| < ε/|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εc|f(x) - L| < εe|f(x) - L| < εp|f(x) - L| < εt|f(x) - L| < ε/|f(x) - L| < ε0|f(x) - L| < ε-|f(x) - L| < εx|f(x) - L| < ε-|f(x) - L| < εc|f(x) - L| < ε-|f(x) - L| < εd|f(x) - L| < ε>|f(x) - L| < ε0|f(x) - L| < ε |f(x) - L| < ε<|f(x) - L| < ε |f(x) - L| < ε||f(x) - L| < εx|f(x) - L| < ε |f(x) - L| < ε-|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < ε||f(x) - L| < ε |f(x) - L| < ε<|f(x) - L| < ε |f(x) - L| < εδ|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εa|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε||f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εb|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εk|f(x) - L| < εm|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εo|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε_|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < ε4|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < ε-|f(x) - L| < εp|f(x) - L| < εo|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εs|f(x) - L| < ε_|f(x) - L| < εa|f(x) - L| < εc|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εv|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < ε_|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε_|f(x) - L| < ε_|f(x) - L| < εj|f(x) - L| < εs|f(x) - L| < ε8|f(x) - L| < εA|f(x) - L| < εc|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εs|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε:|f(x) - L| < ε |f(x) - L| < ε4|f(x) - L| < εp|f(x) - L| < εx|f(x) - L| < ε;|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εi|f(x) - L| < εd|f(x) - L| < ε |f(x) - L| < ε=|f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < εd|f(x) - L| < εy|f(x) - L| < εn|f(x) - L| < εa|f(x) - L| < εm|f(x) - L| < εi|f(x) - L| < εc|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εp|f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εg|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < ε_|f(x) - L| < εb|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εl|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εp|f(x) - L| < εe|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < ε=|f(x) - L| < ε/|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εc|f(x) - L| < εe|f(x) - L| < εp|f(x) - L| < εt|f(x) - L| < ε/|f(x) - L| < ε0|f(x) - L| < ε-|f(x) - L| < εx|f(x) - L| < ε-|f(x) - L| < εc|f(x) - L| < ε-|f(x) - L| < εd|f(x) - L| < ε>|f(x) - L| < ε0|f(x) - L| < ε |f(x) - L| < ε<|f(x) - L| < ε |f(x) - L| < ε||f(x) - L| < εx|f(x) - L| < ε |f(x) - L| < ε-|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < ε||f(x) - L| < ε |f(x) - L| < ε<|f(x) - L| < ε |f(x) - L| < εδ|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εa|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε||f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εb|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εk|f(x) - L| < εm|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εo|f(x) - L| < εv|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε_|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < εa|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε |f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < ε4|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < εu|f(x) - L| < εr|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < ε-|f(x) - L| < εp|f(x) - L| < εo|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < εs|f(x) - L| < εs|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εs|f(x) - L| < ε_|f(x) - L| < εa|f(x) - L| < εc|f(x) - L| < εt|f(x) - L| < εi|f(x) - L| < εv|f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < ε_|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε_|f(x) - L| < ε_|f(x) - L| < εj|f(x) - L| < εs|f(x) - L| < ε8|f(x) - L| < εA|f(x) - L| < εc|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εs|f(x) - L| < εt|f(x) - L| < εy|f(x) - L| < εl|f(x) - L| < εe|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εt|f(x) - L| < εe|f(x) - L| < εx|f(x) - L| < εt|f(x) - L| < ε-|f(x) - L| < εu|f(x) - L| < εn|f(x) - L| < εd|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < ε-|f(x) - L| < εo|f(x) - L| < εf|f(x) - L| < εf|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε:|f(x) - L| < ε |f(x) - L| < ε4|f(x) - L| < εp|f(x) - L| < εx|f(x) - L| < ε;|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εi|f(x) - L| < εd|f(x) - L| < ε |f(x) - L| < ε=|f(x) - L| < ε |f(x) - L| < ε"|f(x) - L| < εd|f(x) - L| < εy|f(x) - L| < εn|f(x) - L| < εa|f(x) - L| < εm|f(x) - L| < εi|f(x) - L| < εc|f(x) - L| < ε_|f(x) - L| < εl|f(x) - L| < εi|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < εe|f(x) - L| < εd|f(x) - L| < ε_|f(x) - L| < εp|f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εa|f(x) - L| < εs|f(x) - L| < εe|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εa|f(x) - L| < εr|f(x) - L| < εg|f(x) - L| < εe|f(x) - L| < εt|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < ε_|f(x) - L| < εb|f(x) - L| < εl|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < εk|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εl|f(x) - L| < ε=|f(x) - L| < ε"|f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εo|f(x) - L| < εp|f(x) - L| < εe|f(x) - L| < εn|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε |f(x) - L| < εn|f(x) - L| < εo|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εr|f(x) - L| < ε"|f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < ε |f(x) - L| < εh|f(x) - L| < εr|f(x) - L| < εe|f(x) - L| < εf|f(x) - L| < ε=|f(x) - L| < ε/|f(x) - L| < εc|f(x) - L| < εo|f(x) - L| < εn|f(x) - L| < εc|f(x) - L| < εe|f(x) - L| < εp|f(x) - L| < εt|f(x) - L| < ε/|f(x) - L| < ε0|f(x) - L| < ε-|f(x) - L| < εx|f(x) - L| < ε-|f(x) - L| < εc|f(x) - L| < ε-|f(x) - L| < εd|f(x) - L| < ε>|f(x) - L| < ε0|f(x) - L| < ε |f(x) - L| < ε<|f(x) - L| < ε |f(x) - L| < ε||f(x) - L| < εx|f(x) - L| < ε |f(x) - L| < ε-|f(x) - L| < ε |f(x) - L| < εc|f(x) - L| < ε||f(x) - L| < ε |f(x) - L| < ε<|f(x) - L| < ε |f(x) - L| < εδ|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εa|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε<|f(x) - L| < ε/|f(x) - L| < εs|f(x) - L| < εp|f(x) - L| < εa|f(x) - L| < εn|f(x) - L| < ε>|f(x) - L| < ε,|f(x) - L| < ε |f(x) - L| < εi|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < εf|f(x) - L| < εo|f(x) - L| < εl|f(x) - L| < εl|f(x) - L| < εo|f(x) - L| < εw|f(x) - L| < εs|f(x) - L| < ε |f(x) - L| < εt|f(x) - L| < εh|f(x) - L| < εa|f(x) - L| < εt|f(x) - L| < ε |f(x) - L| < ε||f(x) - L| < εf|f(x) - L| < ε(|f(x) - L| < εx|f(x) - L| < ε)|f(x) - L| < ε |f(x) - L| < ε-|f(x) - L| < ε |f(x) - L| < εL|f(x) - L| < ε||f(x) - L| < ε |f(x) - L| < ε<|f(x) - L| < ε |f(x) - L| < εε|f(x) - L| < ε.|f(x) - L| < ε
Concept
Topology is a branch of mathematics that studies the properties of space that are preserved under continuous transformations such as stretching and bending, but not tearing or gluing. It provides a foundational framework for understanding concepts of convergence, continuity, and compactness in various mathematical contexts.
Compactness in mathematics, particularly in topology, refers to a property of a space where every open cover has a finite subcover, which intuitively means the Space is 'small' or 'bounded' in a certain sense. This concept is crucial in analysis and topology as it extends the notion of closed and bounded subsets in Euclidean spaces to more abstract spaces, facilitating various convergence and continuity results.
Connectedness refers to the state of being linked or associated with others, fostering a sense of belonging and shared identity. It is fundamental to social cohesion and personal well-being, influencing how individuals interact within communities and networks.
Real analysis is a branch of mathematics that deals with the rigorous study of real numbers and real-valued functions, focusing on concepts such as limits, continuity, and convergence. It provides the foundational framework for calculus and is essential for understanding the behavior of functions and sequences in a real-number context.
A metric space is a set equipped with a metric, which is a function that defines a distance between any two elements in the set, satisfying properties like non-negativity, identity of indiscernibles, symmetry, and the triangle inequality. metric spaces provide a framework for analyzing concepts of convergence, continuity, and compactness in a general setting, extending beyond the familiar Euclidean space.
Continuous time refers to a representation of time as a smooth, unbroken continuum, allowing for the modeling of systems and processes that evolve in an uninterrupted manner. It is crucial in fields such as physics, engineering, and finance, where it facilitates the use of differential equations and other mathematical tools to describe dynamic behavior over time.
Topological spaces are a fundamental concept in mathematics, providing a framework for discussing continuity, convergence, and boundary in a more general sense than metric spaces. They consist of a set of points along with a collection of open sets that satisfy specific axioms, allowing for the exploration of properties like compactness and connectedness without the need for a defined distance function.
A compact topological space is one where every open cover has a finite subcover, a property that generalizes the notion of closed and bounded subsets in Euclidean space. Compactness is a crucial property in topology and analysis, leading to important results like the Heine-Borel theorem and Tychonoff's theorem.
The domain of definition of a function is the set of all possible input values for which the function is defined and produces a valid output. Understanding the domain is crucial for analyzing the behavior of functions and ensuring calculations are valid within the given constraints.
Darboux's theorem states that every differentiable function on an interval has the intermediate value property, meaning that it takes on every value between any two of its values. This theorem highlights the continuous nature of derivatives despite the potential for discontinuities in the derivative itself.
The 'root of an element' typically refers to the mathematical operation of finding a number which, when raised to a specified power, yields the original element. This concept is crucial in fields like algebra and calculus, where it is used to solve equations and analyze functions.
Topological structures are mathematical frameworks that focus on the properties of space that are preserved under continuous transformations, such as stretching or bending, but not tearing or gluing. They provide a foundational understanding for various branches of mathematics and science, including geometry, analysis, and quantum physics, by emphasizing the qualitative aspects of space and continuity.
Denotational semantics is a formal method for expressing the meaning of programming languages by constructing mathematical objects called domains that represent the possible values a program can compute. It provides a framework for proving the correctness of programs and reasoning about their behavior in a compositional manner, where the meaning of a complex expression is derived from its parts.
The Riemann Integral is a method of assigning a number to define the area under a curve within a given interval, using the limit of a sum of areas of rectangles as the number of rectangles approaches infinity. It is foundational for understanding the concept of integration in calculus and serves as a basis for more advanced integration techniques.
Peano's Existence Theorem guarantees the existence of solutions to first-order ordinary differential equations under very mild conditions, specifically requiring only that the function be continuous. Unlike the Picard-Lindelöf theorem, Peano's theorem does not ensure the uniqueness of solutions, making it a fundamental yet limited tool in the study of differential equations.
Existence and Uniqueness Theorems are fundamental in mathematical analysis, particularly in differential equations, ensuring that under certain conditions, a solution exists and is unique. These theorems provide the foundation for understanding the behavior of solutions to equations, which is crucial for both theoretical insights and practical applications in science and engineering.
The Tychonoff theorem states that any product of compact topological spaces is compact, which is a fundamental result in topology and is crucial for understanding the behavior of product spaces. This theorem is particularly significant because it holds true even for an infinite product of spaces, highlighting the robustness of the compactness property under product operations.
The separation axiom is a principle in topology that provides conditions under which distinct points or sets can be 'separated' by neighborhoods, open sets, or continuous functions. These axioms, ranging from T0 to T5, help classify spaces based on their separation properties, influencing the study of continuity, compactness, and convergence in topological spaces.
Continuous representation refers to the mathematical modeling of data or objects in a way that allows for smooth and uninterrupted transitions between values, often used in fields like computer graphics, machine learning, and signal processing. This approach enables more precise and flexible manipulation of information compared to discrete representations, facilitating advancements in areas such as neural networks and digital image processing.
Abel's theorem is a fundamental result in complex analysis that provides a criterion for the convergence of power series at the boundary of their circle of convergence. It states that if a power series converges at a point on the boundary, then the series converges uniformly on any smaller circle within the radius of convergence, and the sum is continuous up to the boundary point where the series converges.
Dini's theorem states that if a sequence of continuous functions converges pointwise to a continuous function on a compact space and the convergence is monotonic, then the convergence is uniform. This theorem is significant in analysis as it provides conditions under which pointwise convergence implies uniform convergence, which is crucial for preserving continuity under limits.
Concept
Continuity in mathematics refers to a function that does not have any abrupt changes in value, meaning it can be drawn without lifting the pencil from the paper. It is a fundamental concept in calculus and analysis, underpinning the behavior of functions and their limits, and is essential for understanding differentiability and integrability.
Continuity of States refers to the philosophical and mathematical idea that states of a system evolve smoothly over time without abrupt changes, often modeled by continuous functions. This concept is crucial in fields like physics and mathematics, where it ensures predictable and stable system behavior under small perturbations.
Tychonoff's theorem states that the product of any collection of compact topological spaces is compact in the product topology. This theorem is fundamental in topology and has significant implications in analysis, particularly in the context of functional analysis and the study of infinite-dimensional spaces.
3